
Apache Maven 2
Effective Implementation

Maria Odea Ching
Brett Porter

Chapter No. 6
"Useful Maven Plugins"



In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.6 "Useful Maven Plugins"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Maria Odea Ching grew up in Daet, a small town in the Philippines, then moved to
the country's capital, Manila, when she went to college. She took up Computer Studies at
De La Salle University, and graduated in 2004. She started using open source tools from
her first job after graduating. From then on, she got interested in the open source
philosophy. She was introduced to Apache Maven, Apache Continuum, and Apache
Archiva early on in her career. She became a committer and a Project Management
Committee member of Apache Maven. Eventually, she was elected as PMC Chair of
Apache Archiva. She is also a member of the Apache Software Foundation.

Deng is currently a Senior Software Engineer and serves as the development lead for the
Maestro project.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


First, I'd like to thank Brett for the whirlwind endeavor which is this
book. I'd also like to thank all our reviewers—Wendy, Emmanuel,
Carsten and the Packt team, for taking the time to review and go
through each chapter. You guys rock! And of course without the
communities of Maven, Continuum, and Archiva, we wouldn't have
anything to write about. So I'd like to thank each and everyone
(committers/developers, contributors, buggers) in these respective
communities. I'd also like to give special thanks to our Exist/G2iX
family for their continuous support.

And last but definitely not the least, I'd like to thank my family and my
boyfriend, Mike, for their unfaltering love and support and for being so
patient and understanding when I have to run off to work on the book.

Brett Porter is a software developer from Sydney, Australia with a passion for
development tooling and automation. Seeking a more standardized and reproducible
solution to organize, build, and deploy a number of software projects across teams, he
discovered an early beta of Maven 1.0 in 2003, and has been heavily involved in the
development of the project since. He is a member of the Apache Maven Project
Management Committee, and has conducted presentations and training on Maven and
related tooling at several conferences and events. He founded the Archiva project in
2005. Brett is also a Director and Member of the Apache Software Foundation.

Brett is currently VP, Product Development at G2iX, in charge of the MaestroDev
division. He and his team seek to make developers more efficient by offering support and
services for development and automation tools including Apache Maven, Apache
Continuum, Apache Archiva, and Selenium.

Brett was co-author of the book Better Builds with Maven, the first book to be written
about the Maven 2.0 release in 2005, and has been involved in reviewing Maven: A
Developer's Notebook and Java Power Tools.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


I'd first like to thank my co-author and friend Deng for agreeing to
participate in this book and lending her experience with Archiva and
Continuum. I am grateful to all of the reviewers that volunteered their
time to help make this the best that it can be. My great thanks go to all
the members of the open source community that participate in these
projects—the developers, as well as those that contribute patches,
detailed bug reports, or answer questions on the user lists—not only do
we build great software together, but I get the chance to work with
truly remarkable individuals.

Finally, my love and thanks go to my wife Laura for sparing some
more of our precious time so that I could complete this book, and for
supporting me in everything I do.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Apache Maven 2
Effective Implementation
This book offers a comprehensive look at using Maven on a project, covering not only
the build system itself, but how it is best used in concert with other development
infrastructures such as source control, continuous integration and build servers, and an
artifact repository. We cover this territory using Subversion, Apache Continuum, and
Apache Archiva, respectively, though the concepts learned should apply to other
comparable systems.

In many ways, this is the book we've always wanted to write about Maven, and it takes a
different approach to the existing Maven titles. Rather than being a reference or
documentation for the software, it takes the approach of walking through a single
example application and associated infrastructure in the same way that you would
develop your own projects. For this purpose, we have crafted the example application
Centrepoint—a simple but functional web application composed of several modules that
itself interacts with Maven, Continuum, and Archiva.

We believe this book will not only show you how to use Maven, but how to use it
effectively, covering concepts and best practices that should endure beyond the current
versions of Maven and apply to your development infrastructure and teams in general.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


What This Book Covers
Chapter 1: Maven in a Nutshell is a quick overview of the fundamentals of Maven—from
creating a simple Maven project to basic plugin configuration to generating sites and
reports. These are demonstrated in an easy to follow step-by-step process. By the end
of the chapter, you should be able to apply and use the skills that you have learned to
your own project.

Chapter 2: Staying in Control with Archiva introduces you to Archiva and its role in
building software. You will learn the basics of installing and configuring it for internal
use. It also shows you how Archiva complements Maven and how they can be used
together efficiently.

Chapter 3: Building an Application Using Maven delves into the details on how to
accurately set up and build an application using Maven. The Centrepoint project is
introduced in this chapter. This is the sample application that will be used for the
hands-on demonstrations throughout the book. You will see how Maven enforces
convention over configuration while building the Centrepoint project.

Chapter 4: Application Testing with Maven goes through the various types of automated
tests that can be executed from Maven. This includes unit testing, integration testing, and
testing web applications using Selenium to name a few. Instrumenting tests,
implementing test coverage, and reporting of test results are also covered.

Chapter 5: Reporting and Checks shows how to configure Maven to generate project
reports and incorporate them in the generated site. This chapter also tackles the basics on
enforcing certain rules or checks on your code such as conforming to code styles and
standards, and finding common bugs in the code while building your application.

Chapter 6: Useful Maven Plugins discusses some of the Maven plugins, both from
Apache Maven and from the Codehaus Mojo project, that may be of great help in your
Maven builds. The functionality of these plugins range from keeping track of the source
revision number for the build to executing external applications as part of the build. You
will learn to identify when to use each plugin and how to configure them properly to
address your need.

Chapter 7: Maven Best Practices illustrates the effective usage of Maven. You will learn
tips and tricks for setting up your development environment to managing your project
dependencies to making your builds portable and reproducible. By the end of this
chapter, you should be able to apply what you've learned to your next project, or even to
your current one.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 8: Continuum: Ensuring the health of your source code highlights the
importance of continuous integration in software development through Continuum. It
covers basic installation and set up, adding projects to Continuum, and effective
configuration and build scheduling, at the same time demonstrating how it works in
accordance with Maven and also with Archiva.

Chapter 9: Continuum in Depth deals with releasing projects using both Maven and
Continuum. The different phases involved in the release process will be covered along
with a bit of troubleshooting on the side. You will also learn about building multiple
projects simultaneously in Continuum through parallel and distributed builds.

Chapter 10: Archiva in a Team gives you the more advanced features of Archiva and
demonstrates how to configure it for use in a team. You will learn how to control access
to a repository, how to take advantage of repository groups, how to make use of its
reporting feature, and how to maintain your Archiva repositories.

Chapter 11: Archetypes covers Maven archetypes. It discusses some of the archetypes
available—what their purpose is and what the generated project from each archetype
looks like. You will also create a custom archetype specifically for the Centrepoint
application, which will be used in the last chapter.

Chapter 12: Maven, Archiva, and Continuum in the Enterprise shows how to configure
Archiva and Continuum effectively for use in the corporate environment. Tips on how to
set up projects and repositories across multiple projects with respect to controlling who
and what can be accessed by different teams covers the first half of the chapter. The
second part demonstrates the web services feature of both applications by creating
plugins for the Centrepoint application and using them to get information from Archiva
and Continuum.

Appendix A: Troubleshooting Maven provides techniques for troubleshooting Maven.
Incorrect POM or settings configuration, and dependency and download problems are a
few of the usual suspects that will be covered here.

Appendix B: Recent Maven Features discusses the new features in Maven 2.1 and above.
These features include password encryption, reactor project selection, and parallel
downloads of dependencies.

Appendix C: Migrating Archiva and Continuum Data illustrates how to migrate data in
Archiva and Continuum when upgrading to a higher version. How to switch to a different
database from the built-in one is also discussed.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins
Nobody can tell exactly how many Maven plugins exist today—since, like 
dependencies they can be retrieved from any specifi ed remote repository, there are 
likely hundreds to choose from, and likely even more that have been custom written 
for use within the infrastructure of particular organizations.

A common practice for frameworks and tools that require build integration is to 
publish a Maven plugin to accomplish the task—and it is becoming increasingly 
common to encounter this as a standard part of the getting started section of a project 
you might hope to use. However, there are also a number of plugins that would be 
considered general purpose and handle some extended build cases in a wider variety 
of projects.

In this chapter, we will take a closer look at some of these plugins from two locations: 
those hosted as part of the Apache Maven project (http://maven.apache.org/
plugins/), and a number of plugins from the Codehaus Mojo project (http://
mojo.codehaus.org/plugins.html), which is oriented directly towards Maven 
plugin development. Some of these have been covered already in this book, so this 
will be an opportunity to examine their use in more depth, while others are new. 

 Where possible, we will apply the plugins to our example application to see how 
they can be used in practice, and then cover some of the other use cases and best 
practices for their use.

While this won't come close to covering all the plugins you are likely to encounter, 
with these common tools in your arsenal it will cover many of your Maven build 
needs, reducing the need for you to write your own plugins.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 186 ]

The Remote Resources plugin
Most projects will use the Resources plugin at some point, even if it isn't confi gured 
directly—it is standard in the default life cycle for any packaging that produces some 
type of artifact, bundling the resources found in src/main/resources.

 However, what if you wanted to share those resources among multiple projects? The 
best approach to doing that is to store the resources in the repository and retrieve 
them for use in multiple builds—and that is where the Remote Resources plugin 
comes in. 

First, we should note that this is not the only alternative for handling the scenario. 
The Dependency plugin's unpack goal is also quite capable of unpacking an artifact 
full of resources directly into the location that will be packaged.

However, the Remote Resources plugin offers several advantages: 

1. Re-integration with the resources life cycle so that retrieved resources will 
automatically be processed in any goals in the process-resources phase.

2. The ability to perform additional processing on the resources (including the 
optional use of Velocity templates to generate the resources) before inclusion.

3. A specifi c bundle generation goal for creating the resource artifact in the 
fi rst place.

These advantages can make the plugin very effective at dealing with some common 
scenarios. For example the inspiration for the creation of the plugin, and one of its 
more common uses, is to place aggregated license fi les within the fi nal artifact.

There are other scenarios where the dependency:unpack goal 
remains more suitable—for example, the bundling of plugin 
confi guration as seen in Chapter 5, Reporting and Checks. It is 
best to select the Remote Resources plugin when the fi les will be 
incorporated into the resources life cycle and the Dependency 
plugin when the fi les will be utilized independently.

 Let's look at how to create a license fi le for our Centrepoint application. We will 
do this in two steps—the creation of the resource bundle that provides the generic 
resources for any project by the same organization, and the processing of the 
module resources.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 187 ]

Creating a Remote Resource bundle
 Remote Resource bundles are regular JAR fi les packaged with additional information 
generated by the remote resource plugin's bundle goal. Creating a module follows 
the same process as with other JAR fi les.

In the example application, we will create the module outside of the Centrepoint 
multi-module hierarchy, so that it could (theoretically) be used by other projects 
from the same organization. This could be anywhere in source control, but we 
will assume it sits side-by-side with the effectivemaven-parent module in 
the workspace.

$ mvn archetype:generate -DartifactId=license-resources \

                         -DgroupId=com.effectivemaven

As this is not going to be a code project, the src/main/java and src/test 
directories can be removed from the generated content. We then continue to 
add the parent project to the POM, so the result looks like the following:

<project xmlns="http://maven.apache.org/POM/4.0.0" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
    http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <parent>
    <groupId>com.effectivemaven</groupId>
    <artifactId>effectivemaven-parent</artifactId>
    <version>1-SNAPSHOT</version>
    <relativePath>../effectivemaven-parent/pom.xml</relativePath>
  </parent>
  <artifactId>license-resources</artifactId>
  <version>1.0-SNAPSHOT</version>
  <name>License Resource Bundle</name>
</project>

We will add the Remote Resources plugin shortly, but fi rst let's create the 
resources that will be bundled. These are added to the src/main/resources 
like regular resources.

Consider the following Velocity template fi le, src/main/resources/LICENSE.vm:

## License Generator
#macro(showUrl $url)
  #if($url)

    ($url) 
  #end
#end

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 188 ]

This software is distributed under the following license(s):
#foreach ($l  in $project.licenses)
  - $l.name #showUrl ($l.url)

#end

#if (!$projectsSortedByOrganization.isEmpty())
The software relies on a number of dependencies. The individual 
licenses are outlined below.

#set ($keys = $projectsSortedByOrganization.keySet())
#foreach ($o in $keys)
From: '$o.name' #showUrl($o.url)

#set ($projects = $projectsSortedByOrganization.get($o))
#foreach ($p in $projects)

  - $p.name #showUrl ($p.url) 
    $p.artifact
#foreach ($l  in $p.licenses)
    License: $l.name #showUrl ($l.url)

#end

#end
#end

#end

For those not familiar with Velocity, the purpose of this is to fi rst iterate through 
the project's licenses and list them, then secondly iterate through the project's 
dependencies (grouped by the organization they are from) and list their license. The 
$projectsSortedByOrganization variable is a special one added by the Remote 
Resources plugin to assist in this task.

Before we can move on to use the bundle, we need to add the plugin to the bundle 
project like so:

<build>
  <plugins>
    <plugin>
      <groupId>org.apache.maven.plugins</groupId> 
      <artifactId>maven-remote-resources-plugin</artifactId>
      <version>1.0</version>
      <executions>
        <execution>
          <goals>
            <goal>bundle</goal>
          </goals>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 189 ]

This goal is required to generate a bundle manifest, the contents of which tell the 
plugin which resources to process when it is later called on to do so.

With this all in place, we can now install the bundle into the local repository, ready 
for use:

license-resources$ mvn install

 If you were to inspect the contents of the generated JAR fi le, you would see both the 
LICENSE.vm fi le in the root, and the bundle manifest in META-INF/maven/remote-
resources.xml. You would also fi nd that the Velocity template is unmodifi ed—the 
contents will be executed when the bundle is later processed in the target project, 
which we will proceed to look at now.

Processing Remote Resources in a project
 Using the resource bundle we have created is now quite straightforward. We start by 
adding the folllowing to the build section of modules/pom.xml fi le of Centrepoint:

<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-remote-resources-plugin</artifactId>
  <version>1.0</version>
  <executions>
    <execution>
      <goals>
        <goal>process</goal>
      </goals>
    </execution>
  </executions> 
  <configuration>
    <resourceBundles>
      <resourceBundle>
        com.effectivemaven:license-resources:1.0-SNAPSHOT
      </resourceBundle>  
    </resourceBundles>
  </configuration>
</plugin>

Here we have added a list of resource bundle artifacts to the confi guration for the 
process goal, in the familiar shorthand artifact notation of groupId:artifactId:
version. It has been added to the modules POM so that the license is included in the 
JAR fi les, but not included in the other non-code modules such as the documentation 
(which already generates a copy of the license from the reporting plugins).

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 190 ]

Normally, you should use a released version of the license bundle, 
not a snapshot as we have here (as we have not yet covered the 
release process!). Since the bundle is confi gured directly and not 
through a dependency, the Release plugin will not detect this 
unresolved snapshot later.

 Now, if we build a module such as store-api, we will see the license included in the 
root directory of the JAR fi le with the following content: 

This software is distributed under the following license(s):
  - The Apache Software License, Version 2.0 
      (http://www.apache.org/licenses/LICENSE-2.0.txt) 

The software relies on a number of dependencies. The individual 
licenses are outlined below.

From: 'Apache Maven 2: Effective Implementations Book' 
      (http://www.effectivemaven.com/) 

  - Centrepoint Data Model 
    com.effectivemaven.centrepoint:model:jar:1.0-SNAPSHOT
    License: The Apache Software License, Version 2.0 
      (http://www.apache.org/licenses/LICENSE-2.0.txt) 

From: 'Google' 
      (http://www.google.com/) 

  - Guice 
      (http://code.google.com/p/google-guice/) 
    com.google.code.guice:guice:pom:1.0
    License: The Apache Software License, Version 2.0 
      (http://www.apache.org/licenses/LICENSE-2.0.txt)

This is a good start, but we don't really need to include our own artifacts in the list, 
so we go back to the plugin declaration in modules/pom.xml and add another line 
of confi guration:

<configuration>
  <excludeGroupIds>${project.groupId}</excludeGroupIds>
  <resourceBundles>
  ...

Regenerating the above artifact will alter the license to remove the dependencies 
from the project's group.

A different case is the fi nal distribution. As this is not part of the modules hierarchy, 
fi rst we need to include the plugin defi nition identical to the one added previously.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 191 ]

In the sample code for this chapter, you will notice that this has been 
taken a step further with the version and common confi guration pushed 
into a pluginManagement section of the Centrepoint parent POM, 
and just the execution of the plugin goal remains in the modules and 
distribution POM fi les.

 We can now build the assembly as usual:

distribution$ mvn clean install

Upon inspecting the generated assemblies, you will not see the license fi le included 
yet. This is because the Assembly plugin does not pick up Maven resources by 
default, as it does not participate in the normal life cycle.

To include the license fi le, we must alter the assembly descriptor distribution/
src/main/assembly/bin.xml and add the following fi le set:

<fileSet>
  <directory>target/maven-shared-archive-resources</directory>
  <outputDirectory>/</outputDirectory>
</fileSet>

The directory given is the standard location in which the Remote Resources plugin 
stores the resources it has processed, so if you decide to confi gure that differently in 
your own projects you would need to change this to the corresponding location.

Upon building the assembly again we will see that the license has been generated, 
and that it includes the licenses of dependencies outside of the Centepoint 
application. As you can see, the distributed application depends on Jetty (also under 
the Apache License 2.0), which includes some portions of Glassfi sh (under the CDDL 
1.0 License).

While the above technique can be very helpful in constructing some 
useful information about your project and its dependencies, it cannot be 
guaranteed to produce complete licensing information for a project. The 
method relies on accurate information in the POMs of your dependencies, 
and this can sometimes be inaccurate (particularly when using 
public repositories such as the Maven Central Repository). If you are 
redistributing your fi les, always confi rm that you have correctly recorded 
any necessary licensing information that must accompany them!

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 192 ]

 The Remote Resources plugin is also capable of covering other scenarios that are 
particularly suited to license handling or more generally recording information 
about the project it is being processed for. These include:

1.  The supplementalDataModels confi guration option that allows you to fi ll 
in incomplete or incorrect metadata for a project dependency before the 
resources are processed (to avoid particular problems as described above).

2. The appendedResourcesDirectory, which allows you to store the above 
models in a separate fi le. 

3. The properties confi guration , which allows the injection of other build 
properties into the Velocity templates.

However, with this in mind, remember that the Remote Resources plugin is often 
just as suitable for any type of reusable resource, even if it is a static fi le.

The Build Number plugin
 In Maven Mojos, the goals within a plugin are always designed to be simple tasks. 
Their aim is to do one thing, and do it well. A good example of this is the Build 
Number plugin. This simple plugin has one goal (create), with one purpose—to 
obtain a suitable build number and expose it to the build through properties or a fi le. 

While the plugin focuses on exposing the current Subversion revision, it is 
capable of generating an incremented build number (stored in a specifi ed 
properties fi le), and a representation of the current system date and 
time. This feature can be very useful in identifying the exact heritage of 
a particular build. The build number generated by the plugin is different 
to that used by Maven to identify snapshots or artifact versions. While 
it is possible that you might mark your version using the information 
it generates, this plugin is typically used to record information about a 
particular build—whether it is a snapshot, or a release—within the artifact 
itself as a permanent record.

Using the plugin is straightforward.  By adding the goal to the project, the 
Subversion revision and a timestamp property will be exposed from the point 
that it is run onwards.

<plugin>
  <groupId>org.codehaus.mojo</groupId>
  <artifactId>buildnumber-maven-plugin</artifactId>
  <version>1.0-beta-1</version>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 193 ]

  <executions>
    <execution>
      <phase>generate-resources</phase>
      <goals>
        <goal>create</goal>
      </goals>
    </execution>
  </executions>
</plugin>

In this example, we execute the plugin in the generate-resources phase so that the 
properties are available to any resource processing. Note that the values could be 
used with the Remote Resources plugin that we have just seen.

There are two things to take into consideration with this confi guration, however. 
Firstly, not all source builds will be Subversion checkouts, but the plugin does not 
verify that. To work around this potential problem, you can put the goal into 
a profi le:

<profile>
  <id>buildnumber</id>
  <activation>

    <file>

      <exists>.svn</exists>

    </file>

  </activation>

  <plugin>
    <groupId>org.codehaus.mojo</groupId>
    <artifactId>buildnumber-maven-plugin</artifactId>
    ... 

This particular activation check will cause the profi le to be used within a Subversion 
checkout (that is, if .svn exists in the current directory), and to skip the plugin if not. 
In this case, the properties will not be set (or the fi le will not be created), so the code 
using these must take that into account.

Secondly, how the values will be accessed needs to be given careful consideration. 
For example, it is unlikely that you want to create a convoluted build processing step 
to fi lter the value into a particular JSP fi le to appear in a web application. For the sake 
of keeping the build simple (and speedy), it is best to write the values into a single 
fi le that the application can then load from its classpath. 

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 194 ]

This can be achieved by creating a fi ltered resource that contains references to the 
values.  The advantage of this method is that it is automatic if you have already 
confi gured fi ltered resources, and automatically ends up in the classpath of the 
application code that can load the fi le as a resource.

The plugin also supports a number of formatting options, in the event that you do 
not wish to use the raw build number and timestamp integers. These options are also 
used to trigger the manual build number increment feature of the plugin in the event 
that Subversion is not used.

As our example application is one such case, let's apply this technique ourselves. 
We will only need to include the build number plugin in one location—if it were to 
be run on every module, the number would end up being different for each. Some 
seemingly sensible options may not actually be appropriate here: 

The parent project will cause the build number to be included in every 
module, and executing it just in the parent may result in it not being 
executed at all.
The fi nal distribution might be the best place in some situations, but 
what if you needed to reference the build number from the 
application itself?

Considering these factors, the best location is the web application module, as 
this will be the code which will eventually display the build number. In another 
application where multiple modules were to require it, it might be best generated 
in a common dependency instead.

The modules/webapp/pom.xml fi le requires two modifi cations. First, to enable 
fi ltering, we must add both the new fi ltered resources location and the original 
resources location to the build section (as Maven inheritance overrides resources 
instead of adding to them). This will look like the following:

<resources>
  <resource>
    <directory>src/main/resources</directory>
  </resource>
  <resource>
    <directory>src/main/filtered-resources</directory>
    <filtering>true</filtering>
  </resource>
</resources>

Depending on what resources you have in src/main/resources, you may choose 
to do away with it and include them in the filtered-resources directory instead. 
However, if some resources may be corrupted by fi ltering (such as images and other 
binary fi les), you will need to retain both.

•

•

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 195 ]

Next, the addition of the build number plugin is needed with some particular 
confi guration: 

<plugin>
  <groupId>org.codehaus.mojo</groupId>
  <artifactId>buildnumber-maven-plugin</artifactId>
  <version>1.0-beta-1</version>
  <configuration>
    <format>Build: #{0} ({1,date})</format>
    <items>
      <item>buildNumber\d*</item>
      <item>timestamp</item>
    </items>
  </configuration>
  <executions>
    <execution>
      <phase>generate-resources</phase>
      <goals>
        <goal>create</goal>
      </goals>
    </execution>
  </executions>
</plugin>

 Note the formatting options being used. The fi rst, format, specifi es what the 
confi gured property (by default called buildNumber) will look like, using the Java 
MessageFormat syntax. The items confi guration provides a list of variables to 
substitute into the message format for {0}, {1}, and so on. Here, the fi rst confi gured 
variable is buildNumber\d*, which is used to trigger the automatic number 
generation. The second is the integer timestamp that represents the current 
system date and time.

You may also confi gure the location of the fi le to be generated that 
contains the incremented build number, with the default being 
buildNumber.properties in the current directory. It is important to 
place this in a location that will not be purged over time—for example, in 
the target directory, as this is regularly cleaned!

The exposed property is referenced from the resource fi les using the normal 
fi ltering syntax, so we can create src/main/filtered-resources/build.
properties like so:

build.message=${buildNumber}

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 196 ]

When we build the application, we will see the build number generated and 
incremented each time:

[INFO] Storing buildNumber: Build: #1 (27/03/2009) at timestamp: 
1238074038389

All that is left to do is to access the build number from the application, which you 
can see in the BuildNumber class:

ResourceBundle bundle = ResourceBundle.getBundle( "build" );
msg = bundle.getString( "build.message" );

As you can see, if you are using Subversion it is likely a simpler option to use the 
revision number instead of creating a new build number, or perhaps passing the 
build number in from your build server using its own build numbering scheme. 
Using an incremented number as we have above can be inconsistent depending on 
the build order and build successes, with the additional requirement of maintaining 
the separate tracking fi le.

The Shade plugin
 Maven's dependency-based nature promotes the practice of proper 
componentization of a build and producing a set of discrete artifacts that can be 
aggregated into an application. Throughout a dependency tree, dependencies may 
appear multiple times and can be mediated to the correct version so that a single 
version can be used. However, circumstances will occur where, rather than the 
discrete list of dependencies, it is necessary to merge, hide, or alter the parts of a 
number of dependencies into a single artifact.  This is the purpose for which the 
Shade plugin was developed, and in this section we will look at two use cases in 
more detail.

Building a standalone artifact
In Chapter 3, Building an Application Using Maven, we learned how to build a 
suitable distribution for our example application. This was a suitable set up for a 
server where there are multiple confi guration fi les, startup scripts, as well as the 
application itself. But for some Java applications, all that is needed is to run 
static void main(). 

Distributing such applications if they have dependencies on other JAR fi les has 
always been problematic. Java has a mechanism to run a JAR on its own through 
the Main-Class manifest attribute, providing us with a simple command such as 
the following:

client$ java -jar centrepoint-client-1.0-SNAPSHOT.jar

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 197 ]

However, this will generally fail as the dependencies required are not present on 
the classpath. From here, you might add the Class-Path element to the manifest. 
However, this requires that the JARs be placed in a particular location relative to the 
other fi les, and we are back to distributing a complete archive.

To make this easier, the Assembly plugin contains a pre-built descriptor called 
jar-with-dependencies. This simply collapses the JAR and all it's dependencies 
into one large JAR so that the above type of execution can work. In some cases, this 
confi guration will work correctly, and no more work needs to be done.

 One of the issues with the naïve approach of the assembly plugin is that many of the 
dependencies will house fi les with identical names, and it is given little choice but to 
pick just the last fi le that it encounters rather than dealing with the overlap properly.

This is where the Shade plugin can be useful, by providing hooks to transform these 
resources into a single resource as appropriate.

 This is similar in intent to the Uberjar plugin that you may have used in 
Maven 1, however the technique is improved. In the assembly plugin 
and the shade plugin, the resulting artifact collapses the dependency 
JARs and corrects references instead of having to unpack and construct 
classloaders, making it a much faster alternative.

 For example, consider the following confi guration:

<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-shade-plugin</artifactId>
  <version>1.2</version>
  <executions>
    <execution>
      <phase>package</phase>
      <goals>
        <goal>shade</goal>
      </goals>
      <configuration>
        <transformers>
          <transformer implementation="org.apache.maven.plugins.shade.
                        resource.ComponentsXmlResourceTransformer" />
        </transformers>
        <artifactSet>
          <excludes>
            <exclude>xerces:xercesImpl</exclude>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 198 ]

          </excludes>
        </artifactSet>
      </configuration>
    </execution>
  </executions>
</plugin>

 Here we have the shade goal bound to the package phase to produce the 
collapsed JAR fi le as we might expect. In the transformers section, a transformer 
is added that merges all encountered Plexus descriptor fi les under META-INF/
plexus/components.xml. Finally, we have the ability to confi gure the transitive 
dependencies that are included and excluded from the fi nal artifact using the 
artifactSet confi guration. 

 As of Shade version 1.2, the following transformers are supplied with the plugin:

 ApacheLicenseResourceTransformer and 
ApacheNoticeResourceTransformer: Specifi c to Apache license fi les such as 
those we created with the remote resources plugin earlier
AppendingTransformer: To concatenate plain text resources
ComponentsXmlResourceTransformer: For merging Plexus descriptors
ManifestResourceTransformer: For merging Java JAR fi le manifests
ServicesResourceTransformer: For merging Java services metadata in 
META-INF/services

XmlAppendingTransformer: To concatenate XML resource fi les with 
appropriate nesting

 These transformers will cover many of your needs when using the Shade plugin. 
You may eventually need your own custom transformer if there are certain types 
of resources that must be merged between two artifacts that are not accommodated 
by the above. In that case, a transformer can be written in a separate artifact and 
added as a plugin dependency, then referenced directly from the confi guration. This 
is similar to the technique illustrated for sharing other build resources such as the 
reporting confi guration fi les in Chapter 5, Reporting and Checks.

•

•

•

•

•

•

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 199 ]

Shading dependencies
Another interesting use case of the Shade plugin is to hide or alter the dependencies 
of an artifact. This can be helpful in several situations, such as: 

 Distributing classes from JARs that are diffi cult to access as dependencies (as 
long as such redistribution is allowed). For example, you may need 
to use a patched version of a common library and not want to cause confl ict 
for projects that might depend on both your library and the original version.
Avoiding confl icts with other instances of the dependency within 
a classloader or to work around incompatible versions in a 
dependency tree.
Reducing the amount of code shipped by selectively including code from a 
particular dependency.

These situations are all similar and boil down to including some or all of the classes 
from a set of dependencies into the current artifact and altering the transitive 
dependency tree to compensate.

Let's consider this example within the context of the example application. In the 
example code for this chapter, we have extended the model to use commons-lang, 
which is used to construct the equals and hashCode methods. Now, if we were 
to share the API and model with third party developers to create their own store 
implementations, it would raise the same issues:

Requiring the dependency of commons-lang (about 260K in size) for just a 
couple of classes.
Introducing a dependency with a potentially stricter requirement than the 
rest of the application may later require (for example, if an incompatible, Java 
5 enabled, commons-lang 3.0 is made available), again for very few classes.

In this situation, shading in just the portions of commons-lang that are needed may 
be a viable alternative. It is important to note that we can only do this if the license of 
the dependency allows such a combination, which in this case is true.

An important part of this scenario is that the dependency is being shared 
outside of the current application. Inside an application, where you have 
full control of the dependency tree, you are less likely to benefi t from 
shading dependencies for this purpose.

•

•

•

•

•

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 200 ]

  To start with, we will add the Shade plugin confi guration to the model/pom.xml fi le:

<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-shade-plugin</artifactId>
  <version>1.2</version>
  <executions>
    <execution>
      <phase>package</phase>
      <goals>
        <goal>shade</goal>
      </goals>
      <configuration>
        <artifactSet>
          <includes>
            <include>commons-lang:commons-lang</include>
          </includes>
        </artifactSet>
      </configuration>
    </execution>
  </executions>
</plugin>

Running the package command with this in place will show the following:

[INFO] [jar:jar]

[INFO] Building jar: /Users/brett/code/06/centrepoint/modules/model/
target/model-1.0-SNAPSHOT.jar

[INFO] [shade:shade {execution: default}]

[INFO] Including commons-lang:commons-lang:jar:2.3 in the shaded jar.

[INFO] Replacing original artifact with shaded artifact.

[INFO] Replacing /Users/brett/code/06/centrepoint/modules/model/target/
model-1.0-SNAPSHOT.jar with /Users/brett/code/06/centrepoint/modules/

model/target/model-1.0-SNAPSHOT-shaded.jar

 Multiple things are happening here. First, we can see that the normal JAR is 
produced as usual, and then the shade goal runs (consistent with the execution 
we added to the project). The plugin next shows that because of the artifactSet 
that we gave, commons-lang will be included in the JAR. If there were other 
dependencies, they would remain a regular dependency and not be included. 
Finally, we see that using the Shade plugin's default confi guration, the original 
artifact is replaced with the shaded artifact so that this version will be installed or 
used in the reactor instead.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 201 ]

However, we still have some work to do. Notice the size and contents of the JAR for 
the model now—so far, we have added all of commons-lang. We would only like to 
include the builder classes, so for that purpose we add artifact fi lters to the Shade 
plugin confi guration:

<filters>
  <filter>
    <artifact>commons-lang:commons-lang</artifact>
    <includes>
      <include>org/apache/commons/lang/builder/**</include>
    </includes>
  </filter>

</filters>

If we rebuild the project, we see that the JAR has reduced in size and upon inspection 
would fi nd that only the fi les under the given path are included. This also ensures 
other fi les that might cause confusion (such as the pom.properties fi le under 
META-INF from commons-lang) are not included.

Of course, some caution is required here—these classes may well have required some 
of the now-excluded classes that are no longer present. In your own projects, ensure 
that your integration test cases adequately exercise the code being used; so that 
inadvertent runtime errors don't occur later.

Beware the catch here that unit tests won't exercise this change! Unit tests 
run before the shading process occurs, so the tests need to occur in the 
integration test phase or in a separate testing module.

The next thing that we might notice about the contents of the JAR fi le is that the 
classes are still in their original packages under org/apache/commons/lang. This 
poses a potential problem for other projects that use commons-lang and depend 
on this API. There will now be two copies of these classes on the classloader that 
contains both JARs, and depending on the order, either copy of the classes could be 
used. If the wrong version is silently picked up, confusion will ensue on the part of 
the developer that appears to be getting the right version of the dependency, but the 
wrong behavior.

To prevent this, the Shade plugin allows us to encapsulate the use of commons-lang 
entirely by using the relocations feature. 

<relocations>
  <relocation>
    <pattern>org.apache.commons.lang</pattern>
  </relocation>
</relocations>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 202 ]

Now when we build the artifact, we will see that the class names have changed, 
for example:

hidden/org/apache/commons/lang/builder/EqualsBuilder.class

This is more than a simple renaming—the Shade plugin has also adjusted the 
bytecode of these classes and the references in our own Java classes to rename the 
package to include hidden at the start. This will now avoid any confl ict with other 
instances of commons-lang!

Though this confl ict is removed, you may still need to consider the 
converse case, if a class depends on only being instantiated once to 
operate correctly, or is accessed by a string using Class.forName 
for example, shading may not work.

One slight adjustment should be made here, as the default pattern of prepending 
hidden is not always a good choice. This can be confusing to see in stack traces, 
and if two different dependencies shade the same classes in the same way then 
the likelihood of confl ict occurs again. Instead, we can choose to include them 
within the namespace of our own package instead by a slight adjustment to the 
relocation confi guration:

<relocation>
  <pattern>org.apache.commons.lang</pattern>
  <shadedPattern>
    com.effectivemaven.centrepoint.model.shaded.lang
  </shadedPattern>
</relocation>

A fi nal thing is worth noting about the confi guration we have used so far. Initially, 
the shaded artifact replaces the original artifact and is installed in the local 
repository. In addition to replacing the original artifact, you may notice that the 
POM fi le installed in the local repository is also replaced with a different version 
that removes the commons-lang dependency. This is what we would expect as we 
have completely incorporated our commons-lang needs within the classes of the JAR 
through the shading process. This is thanks to the createDependencyReducedPom 
confi guration option being enabled by default .

In some scenarios, you may not wish to replace the artifact, but instead create an 
additional artifact, with a different classifi er, that contains the shaded alternative. 
This can be a good middle ground to give users the choice between an all-in-one 
artifact, or the default artifact that allows Maven to manage the dependencies 
normally. In this case, the createDependencyReducedPom option should be set to 
false, and the shadedArtifactAttached option set to true. Bear in mind, however, 
that the dependency representation for the classifi ed artifact in this instance will be 
incorrect as the main artifact POM is used for classifi ed artifacts as well.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 203 ]

The Shade plugin confi guration contains a number of other confi guration options for 
altering inclusions and exclusions at each step of the process that we have seen here 
and in particular for altering the technique and naming of artifacts that are attached 
with a classifi er. Refer to the Shade plugin documentation for more information: 
http://maven.apache.org/plugins/maven-shade-plugin/shade-mojo.html

Before we move on, you may have observed a potential side effect of this change; 
that there will now be two instances of each class in the application should another 
use commons-lang. If multiple dependencies shade in the same classes, there may 
be multiple copies so even though this is powerful it is worth being judicious about 
using the technique, particularly if you have good control over how your artifact will 
be used as a dependency. Maven's dependency mechanism and version management 
is there for a reason. If it is possible to continue using discreet artifacts as they are, 
then that may be the best and simplest alternative too!

The Build Helper plugin
Within Maven, there are a number of common tasks which plugins can perform to 
alter the current project for changes occurring during the build. We have seen the 
inclusion of new resources in the Remote Resources plugin, and the attachment of a 
new artifact from the Shade plugin. It is also possible to have a plugin generate new 
source code and include it for compilation, even though the directory is not included 
in the POM fi le.

The role of the Build Helper plugin  is to provide a set of goals that can help achieve 
a collection of small but common tasks for which it would not be worth writing a 
custom plugin. 

Adding source directories
Maven's inability to have multiple source directories in the project model has often 
been called into question. However, as time has progressed the request has died 
down as the idea of a standardized source structure took hold.

The Build Helper plugin offers the ability to add another source directory or test 
source directory to that confi gured in the POM. This is not necessarily to allow a 
workaround for the deliberate limitation in the project model, but rather to facilitate 
other use cases that require it. The most common need to use this technique is to 
assist with the migration of a project in an existing layout to Maven temporarily. 

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 204 ]

Even with this capability it is still recommended not to add multiple 
source directories without a particular reason—apart from breaking with 
convention, you may fi nd that some tools that operate based on the values 
in the POM will not recognize the additional directories as containing 
source code.

The following example illustrates the addition of a source directory:

<plugin>
  <groupId>org.codehaus.mojo</groupId>
  <artifactId>build-helper-maven-plugin</artifactId>
  <version>1.1</version>
  <executions>
    <execution>
      <id>add-source</id>
      <phase>generate-sources</phase>
      <goals>
        <goal>add-source</goal>
      </goals>
      <configuration>
        <sources>
          <source>src/main/more-java</source>
        </sources>
      </configuration>
    </execution>
  </executions>
</plugin>

 The need to use the Build Helper plugin for adding sources is now becoming more 
rare. Maven plugins that generate source code would be likely to add the extra 
directory to the project internally without the need for additional confi guration. If 
some other means is used to generate the sources—for example, from a scripting 
plugin—it is common for the scripting plugin to have a way to add the source 
directory with fewer confi gurations than using the Build Helper plugin. However, 
if the need does arise, the Build Helper plugin will prove itself useful.

Attaching arbitrary artifacts
A similar scenario that can occur is the generation of additional artifacts that need 
to be attached to the build process. This means they use the same POM to defi ne 
them, but are different types of related build artifacts, with their own classifi er. 
The artifacts are installed and deployed to the repository alongside the original.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 205 ]

Typically, this will be in the form of another JAR fi le, possibly generated by one of 
the scripting plugins that did not attach the artifact itself. 

However, it could be used for any number of fi les that need to be stored in the 
repository alongside the main artifact. Consider the example of deploying the
license to the repository—if you were to run the install phase on the given project, 
you would be able to have the license installed into the local repository alongside the 
main artifact and its POM.

In reality, this particular confi guration may be overkill, especially if the licenses 
are identical across many projects, or can be derived from the POM. However, 
depending on your deployment needs this possibility can be helpful in ensuring the 
repository contains the information about an artifact that you need, at the time it was 
deployed, in addition to any extra build artifacts that might be generated.

In our example application, we generated the license in two places—in all the Java 
modules, and the fi nal distribution. Deploying it along with the fi nal distribution 
makes some sense, so let's add it to the distribution/pom.xml fi le: 

<plugin>
  <groupId>org.codehaus.mojo</groupId>
  <artifactId>build-helper-maven-plugin</artifactId>
  <version>1.1</version>
  <configuration>
    <artifacts>
      <artifact>
        <file>
          target/maven-shared-archive-resources/LICENSE
        </file>
        <type>txt</type>
        <classifier>license</classifier>
      </artifact>
    </artifacts>
  </configuration>
  <executions>
    <execution>
      <goals>
        <goal>attach-artifact</goal>
      </goals>
    </execution>
  </executions>
</plugin>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 206 ]

This goal will execute after the packaging has occurred, but before installation so 
that it can be attached to the installation (and deployment) process. The fi le to attach 
is the license generated earlier by the Remote Resources plugin and is given an 
extension of .txt and classifi er of -license. When running the install phase, 
we now see the fi le being processed:

[INFO] [build-helper:attach-artifact {execution: default}]

[INFO] [enforcer:enforce {execution: default}]

[INFO] [install:install]

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
pom-transformed.xml to /Users/brett/.m2/repository/com/effectivemaven/
centrepoint/distribution/1.0-SNAPSHOT/distribution-1.0-SNAPSHOT.pom

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
centrepoint-1.0-SNAPSHOT-bin.zip to /Users/brett/.m2/repository/com/
effectivemaven/centrepoint/distribution/1.0-SNAPSHOT/distribution-1.0-
SNAPSHOT-bin.zip

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
centrepoint-1.0-SNAPSHOT-bin.tar.gz to /Users/brett/.m2/repository/com/
effectivemaven/centrepoint/distribution/1.0-SNAPSHOT/distribution-1.0-
SNAPSHOT-bin.tar.gz

[INFO] Installing /Users/brett/code/06/centrepoint/distribution/target/
maven-shared-archive-resources/LICENSE to /Users/brett/.m2/repository/
com/effectivemaven/centrepoint/distribution/1.0-SNAPSHOT/distribution-
1.0-SNAPSHOT-license.txt 

Other goals
The Build Helper plugin also contains some other goals in the latest release at the 
time of writing (v1.1) of more specifi c interest:

remove-project-artifact: To clean the local repository of artifacts from 
the project being built to preserve space and remove outdated fi les. This 
may occur if the build no longer produces those fi les, or if it is necessary to 
remove older versions. 
reserve-network-port: Many networked applications may want to use a 
network port that doesn't confl ict with other test cases. This goal can help 
reserve unique ports to use in the tests. This is useful for starting servers 
in integration tests and then referencing them in the test cases. However, 
note that it won't be available when running such tests in a non-Maven 
environment such as the IDE. 

The goals available in the Build Helper plugin may increase over time, so if you 
have some small, common adjustments to make it is a good place to look to fi rst 
for those utilities.

•

•

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 207 ]

The AntRun plugin and scripting 
languages
Maven was designed to be extended through plugins. Because of the fact that this is 
so strongly encouraged, there are now many plugins available for a variety of tasks, 
and the need to write your own customizations, particularly for common tasks, is 
reduced. However, no two projects are the same, and in some projects, there are 
likely to be some customizations that will need to be made that are not covered by 
an existing plugin.

While it is virtuous to write a plugin for such cases so that it can be reused in 
multiple projects, it is also very reasonable to use some form of scripting for short, 
one off customizations.

 One simple option is to use the AntRun plugin.  Ant still contains the largest available 
set of build tasks to cover the types of customizations that you might need in your 
build, and through this plugin you can quickly string together some of these tasks 
within the Maven life cycle to achieve the outcome that you need.

Running simple tasks
We have already used the AntRun plugin in the distribution module of the example 
application. This snippet was used to copy some confi guration fi les into place and 
create a logs directory, ready for the Assembly plugin to create the archive from: 

<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-antrun-plugin</artifactId>
  <version>1.1</version>
  <executions>
    <execution>
      <id>config</id>
      <phase>process-resources</phase>
      <configuration>
        <tasks>
          <copy todir="${project.build.directory}/generated-
                        resources/appassembler/jsw/centrepoint/conf">
            <fileset dir="src/main/conf" />
          </copy>
          <mkdir dir="${project.build.directory}/generated-
                      resources/appassembler/jsw/centrepoint/logs" />
        </tasks>
      </configuration>
      <goals>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 208 ]

        <goal>run</goal>
      </goals>
    </execution>
  </executions>
</plugin>

This shows how quick and useful the AntRun plugin can be for simple tasks. 
However, it also contains a number of other features that can be of benefi t to the 
build for more signifi cant tasks.

Interacting with the Maven project
As we mentioned in the section, The Build Helper plugin, you can tell the plugin to 
map some directories to new source directories. This functionality is identical to that 
of the Build Helper plugin, but is more conveniently located when the directories are 
being generated by Ant tasks.

This can be useful because even though tools are increasingly supplying native 
Maven plugins in addition to Ant tasks, you might come across a source generation 
tool that only has an Ant task. In this scenario, you can use the AntRun plugin to run 
the tool, generate the source code, and use the sourceRoot parameter to have that 
directory added back into the build life cycle. 

In addition to injecting source directories back into the life cycle, the AntRun 
plugin also injects Maven project information into Ant's context. Probably the most 
important of these is the availability of the project's and plugin's dependencies as 
Ant path references:

maven.compile.classpath: The dependencies in the compile scope (this 
syntax will look familiar to those that used Maven 1's built in Ant-based fi les)
maven.runtime.classpath: The dependencies in the runtime scope 
(including the above)
maven.test.classpath: The dependencies in the test scope (including both 
of the above)
maven.plugin.classpath: The dependencies of the AntRun plugin itself, 
including any added via the POM

Though we have not needed it in the example application, to illustrate how these two 
options would work, consider if you needed to use the XJC Ant task from JAXB to 
generate some sources.

•

•

•

•

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 209 ]

 JAXB is a Java-to-XML binding framework that can be used to generate 
Java source code from XML schema (among many other things), using its 
XJC tool. Though it serves as a suitable example here, you would not be 
faced with this issue with JAXB itself, as it now offers a Maven plugin.

In this example, you might add the following confi guration to an AntRun execution 
in a POM fi le: 

<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-antrun-plugin</artifactId>
  <version>1.3</version>
  <executions>
    <execution>
      <id>xjc</id>
      <phase>generate-sources</phase>
      <configuration> 
        <tasks>
          <taskdef name="xjc" 
              classname="com.sun.tools.xjc.XJCTask"
              classpathref="maven.plugin.classpath" />

          <xjc destdir="${project.build.directory}/xjc"
              schema="src/main/jaxb/schema.xsd">
              <classpath refid="maven.compile.classpath" />

          </xjc>
        </tasks>
        <sourceRoot>${project.build.directory}/xjc</sourceRoot>

      </configuration>
      <goals>
        <goal>run</goal>
      </goals>
    </execution>
  </executions>
  <dependencies>
    <dependency>
      <groupId>com.sun.xml.bind</groupId>
      <artifactId>jaxb-xjc</artifactId>
      <version>2.1.9</version>
    </dependency>
  </dependencies>
</plugin>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 210 ]

We see here that the XJC Task is defi ned using the plugin classpath to locate the 
task and its dependencies (and that task's artifact is added as a plugin dependency 
to accommodate this). Additional built-in Ant tasks would also be added as plugin 
dependencies (such as ant-nodeps).

AntRun and Ant versions
While in some cases they might be compatible, generally you should use 
the same version of the Ant optional tasks as the version of Ant itself. The 
version of Ant used by the plugin is predetermined by what it has been 
built against. In AntRun v1.3, that is Ant 1.7.1. To use a different version 
of Ant, consider a different version of the AntRun plugin. 

Next, the task is run—being passed the project's dependencies and schema to 
generate the source code from. The source code is output to target/xjc, which is 
also added as a source directory by the AntRun plugin because of the confi guration 
specifi ed. As the task runs in the generate-sources phase, it is available for 
compilation in the same way as any other source code. 

Again, the confi guration of AntRun here has been relatively simple, and is 
completely integrated with the Maven artifact handling and build life cycle such that 
it would not likely be needed to write a plugin to wrap the tool completely if you 
were faced with this decision in your environment.

Converting Ant or Maven 1 builds
 The AntRun plugin can be most useful when it comes to converting an existing build 
from Ant or Maven 1 (if it used custom Ant-based plugins or maven.xml heavily).

 The approach to converting such a build varies depending on the project. For some 
projects, it is easier to start over on the build and map in modules one by one, 
interacting via the repository. For others, it might be a matter of gradually turning 
the existing script into a POM fi le and using AntRun to execute the existing code for 
the unconverted parts, keeping the fl ow wrapped in the new Maven life cycle.

The topic of build conversion is covered in more depth in the 
Better Builds with Maven section in Chapter 8, available at 
http://www.maestrodev.com/better-build-maven.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 211 ]

Let's look at another example. The following execution might be added to the 
AntRun plugin, with the same pattern repeated for other such examples in different 
parts of the life cycle:

<execution>
  <id>gen-src</id>
  <phase>generate-sources</phase>
  <configuration>
    <tasks>
      <ant antfile="build-migration.xml" target="gen-src" />
    </tasks>
  </configuration>
  <sourceRoot>${project.build.directory}/gen-src</sourceRoot>
  <goals>
    <goal>run</goal>
  </goals>
</execution>

In this source generation example, the previous build fi le is executed to perform a 
certain task. As before, the resultant directory is added back into the Maven project 
so that Maven can continue to control the build.

  You will notice that the original script (perhaps broken up) is retained and called 
rather than pasting the script fragment into the POM. While either is acceptable 
(as long as the script does not contain multiple targets), it is a good idea to keep the 
POM as trim as possible. Unless the Ant script is just one or two lines long, it is better 
to put those commands into an external build fi le to execute.

This advice applies even if not performing a build conversion. If your 
Maven build contains script fragments that are longer than a few lines, 
consider placing them outside of the POM fi le. However, bear in mind 
that in doing so it will not be available when reading the POM from the 
repository later.

In some conversions, a particular task may be reusable in multiple places or projects 
(particularly if migrating a Maven 1 plugin). In this case, instead of the AntRun 
plugin, you may consider writing your own plugin for the task. Luckily, to reduce 
the work involved Maven also offers the ability to run plugins written in Ant.

Maven plugins written in Ant
 While the AntRun plugin offers a convenient way to string some simple tasks together, 
as with any part of the build process in Maven it is worth taking into consideration a 
simple rule of thumb: if you might use it twice, consider writing a plugin.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 212 ]

Of course, if you do take that step, it is not required to write the plugin in Ant. 
However, having the option available is useful as:  

It will be easier to use for converting from a previous Ant/Maven 1 build
Ant tasks may be more familiar to your team than writing Maven plugins in 
another language
It can be easier to put together a set of Ant tasks for certain procedures than 
to write the corresponding code in another language such as Java

The process for creating Ant plugins involves the following steps: 

1. Create a Maven project of type maven-plugin.
2. Add the maven-plugin-plugin to the build section, including a plugin 

dependency on maven-plugin-tools-ant.
3. Add an Ant build script for each goal to src/main/scripts directory under 

the name goalName.build.xml. This should be a completely executable Ant 
script containing one target defi nition.

4. Add a Mojo defi nition for each goal to src/main/scripts directory 
under the name goalName.mojo.xml. This defi nes the mapping of Maven 
information to the Ant target.

Plugin authoring (in Ant or other languages) is not something we will go into 
detail on in this chapter. For more information on writing plugins in Ant, see the 
documentation: http://maven.apache.org/guides/plugin/guide-ant-plugin-
development.html.

Other scripting languages
While this section has focused on Ant as one of the most common scripting tools 
for builds, it is worth noting that other scripting languages can be used both for 
executable fragments (such as the fragments that AntRun is used for) and whole 
plugins (such as the Ant plugin tools are used for).

If you have expertise in a particular scripting language, and would like to use that 
for your own plugins or to add fragments to the build, you might consider one or 
more of the following projects:

GMaven:  This is a mature solution for writing plugins in Groovy, and 
running Groovy scripts from the POM. For more information, see 
http://groovy.codehaus.org/GMaven.

•

•

•

•

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 213 ]

JRuby Maven Plugin: This is an early but functional tool for writing plugins 
in JRuby, or running Ruby scripts from the POM. For more information, see 
http://mojo.codehaus.org/jruby-maven-plugin/howto.html. 
Script Maven Plugin: This uses BSF (Bean Scripting Framework) for running 
scripts in other languages directly from the POM. Supports a larger number 
of languages, but does not allow the creation of native Maven plugins from 
the source. For more information, see http://mojo.codehaus.org/script-
maven-plugin. 

At the time of writing, the Script Maven Plugin has not 
had an offi cial release and needs to be built from source.

The Exec plugin
In some build situations, the best (or only!) way to get something done might be to 
run an external application, or a piece of Java code. It was for this purpose that the 
Exec plugin was created.  

The plugin contains two goals: exec:exec and exec:java. They are similar in 
purpose, however the java goal sets up an easier way to pass Java confi guration and 
execution parameters to a forked JVM instance, whereas the exec goal simply runs 
any executable available on the system. 

 To use the exec goal, you pass the path of the executable program in the executable 
confi guration option, and optionally can add the environmentVariables or 
arguments confi guration to run the command as desired.

Portability
Keep in mind the question of portability when using the exec goal. 
Some executables may not be available on all platforms that the build 
will run on. You may need to clearly state the requirement in the build's 
documentation, gracefully degrade the functionality, or use a profi le to 
run a different executable on a different platform.

•

•

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 214 ]

In contrast, the java goal automatically locates the JVM executable to run, 
and instead you provide the mainClass confi guration option. The arguments 
confi guration can again be given, but can also include a classpath option that 
helps construct Java -classpath arguments from the Maven build (though it is also 
possible to pass this to the exec goal if you happen to be running a particular java 
executable with it). You may also confi gure systemProperties for the plugin to pass 
to the forked JVM instance.

 By default, the java goal will construct its base classpath from the current project's 
dependencies, though it is also possible to have it pass the plugin's dependencies 
as well or instead of the project dependencies. For more information on confi guring 
either of the plugin goals, refer to the plugin website at: http://mojo.codehaus.
org/exec-maven-plugin.

Both of these goals provide a useful way to run external processes, depending on 
what type of application it is. However, the context that it will be used in is also 
important. For execution there are often two scenarios—integrating the external 
process into the build life cycle (much like the examples we have seen with AntRun 
previously), or pre-confi guring the plugin to be able to be run from the command 
line for a given project.

Adding the Exec plugin to the Build life cycle
 In the fi rst scenario, there may be an external tool or Java application that needs to 
be run at a certain point in the build for which the plugin should be confi gured. 
This occurs in the same way as for any other plugin, using a particular execution.

In The AntRun plugin and scripting languages, we looked at running the XJC tool from 
Ant. Another alternative could be to run the tool from the command line (assuming 
it had been pre-installed in the path):

<plugin>
  <groupId>org.codehaus.mojo</groupId>
  <artifactId>exec-maven-plugin</artifactId>
  <version>1.1.1</version>
  <executions>
    <execution>
      <id>xjc</id>
      <phase>generate-sources</phase>
      <goals>
        <goal>exec</goal>
      </goals>
      <configuration>
        <executable>xjc</executable>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Chapter 6

[ 215 ]

        <arguments>

          <argument>-d</argument>

          <argument>${project.build.directory}/xjc</argument>

          <argument>src/main/jaxb/schema.xsd</argument>

        </arguments>

        <sourceRoot>${project.build.directory}/xjc</sourceRoot>
      </configuration>
    </execution>
  </executions>
</plugin>

 For this particular scenario of source generation, the Exec plugin also contains a 
sourceRoot and testSourceRoot parameter for adding any generated sources into 
the build for later—exactly like the AntRun plugin.

Notice in the example that the confi guration is inside the execution element, and 
therefore will not be able to be run from the command line. This is usually the best 
course of action when binding to the life cycle so that multiple instances are possible.

Running the Exec plugin standalone
There are also a number of uses for running the Exec plugin directly from the 
command line. This might be used with a particular project, or run independently.

 A common reason to use this approach is if a particular Maven project produces 
an executable JAR—we looked at such an example with the Shade plugin earlier. 
By pre-confi guring the Exec plugin with the necessary information, the JAR can be 
easily run by Maven itself. The following POM snippet from the Archiva XMLRPC 
Client illustrates this:

<plugin>
  <groupId>org.codehaus.mojo</groupId>
  <artifactId>exec-maven-plugin</artifactId>
  <version>1.1.1</version>
  <configuration>
    <mainClass>
      org.apache.archiva.web.xmlrpc.client.SampleClient
    </mainClass>
    <arguments>
      <argument>http://127.0.0.1:8081/xmlrpc</argument>
      <argument>admin</argument>
      <argument>${password}</argument>
    </arguments>
  </configuration>
</plugin>

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Useful Maven Plugins

[ 216 ]

Here, the project dependencies are included and the given arguments passed to the 
main function of the class specifi ed. Notice that in contrast to the previous example, 
the confi guration is not in an execution, both because it is not bound to the life cycle, 
but also so that it can be run from the command line. 

Executing this is now a matter of running the following command:  

$ mvn exec:java -Dpassword=ADMIN_PASSWORD

Clearly, this is much easier to remember than the full set of arguments!

In similar scenarios, the Exec plugin can become very useful in being able to give a 
simple demonstration or quick use of an application while in development. In some 
ways, it can be compared to jetty:run for web applications as bringing the same 
functionality to executable standalone applications.

Summary
As we learned early in the fi rst chapter, once you have the right framework in place 
with Maven, it is a matter of fi nding and selecting the right combination of plugins to 
assemble your build from there on. Here, we have seen a selection of such plugins to 
help achieve some common builds goals.

The list doesn't stop here though. If you are looking to integrate a particular tool 
or framework into your build, see if a plugin is already available for it. A number 
of plugins such as the Dependency plugin, Enforcer plugin, Assembly and 
App Assembler plugins, discussed elsewhere in the book, have more goals and 
confi gurations that are worth investigating as well. If you have some other needs 
that might apply to multiple builds, search for a plugin to serve that case, or beyond 
that write one yourself in a scripting language, as a set of Ant tasks, or your own 
Maven plugin. Online Maven repository search engines can be helpful in fi nding 
other plugins to use.

In the fi rst half of this book, we have covered all the pieces of the build puzzle 
needed to build an application with Maven—from the basics to dependency 
management, multi-module applications, distribution, reporting, and now a 
variety of plugins to augment build functionality.

With this in place, in the next chapter we are going to review what we have learned 
about Maven so far and lay out some best practices to keep in mind as you write or 
review your own builds.

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-implementations/book


Where to buy this book
You can buy Apache Maven 2 Effective Implementation from the Packt Publishing
website: http://www.packtpub.com/apache-maven-2-effective-
implementations/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/apache-maven-2-effective-implementations/book

http://www.packtpub.com/apache-maven-2-effective-
http://www.packtpub.com/apache-maven-2-effective-implementations/book
http://www.packtpub.com/Shippingpolicy

