

Flex 3 with Java

Satish Kore

Chapter No. 5
"Working with XML"

For More Information: www.packtpub.com/flex-3-with-java/book

 In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.5 "Working with XML"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Satish Kore is a software engineer, an amateur blogger, and a dreamer based in
a beautiful city Bangalore in India. He has worked on a variety of technologies
including Adobe Flex, Java, and J2ME over the past eight years. He has always
been passionate about Rich Internet application (RIA) technologies and loves
working on Adobe Flex. He always enjoyed writing software applications and
solving common problems using technology. You can keep up with his work by
visiting his blog at http://blog.satishkore.com, or by following him on
Twitter http://twitter.com/satishkore.

I thank my family for being encouraging and supportive and special
thanks to my friends for always inviting me on parties even though I
constantly refused to join them by giving them the same boring reason
that I am busy with writing.

This book means a lot to me since I have spent all my weekends
and free time writing this book for the past 6-7 months. However,
this book would not have been possible without some individuals
who have worked alongside me during the writing, reviewing, and
publishing phases.

I would thank James Lumsden for giving me the opportunity to write
this book. I would also like to thank Neelkanth Mehta, Swapna
Verlekar, Dhiraj Bellani, and all my technical reviewers for
proofreading, reviewing, and refining the content of this book; without
their efforts, this book wouldn’t have been completed.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Flex 3 with Java
Rich Internet applications (RIAs) are a new breed of web applications that are capable of
doing things such as loading and handling heavy data ten times faster than HTTP,
designing great-looking and sophisticated user interfaces that resemble desktop-based
applications, and having the possibility of utilizing existing server technology such as
Java, that would have never been possible with typical web technologies, such as HTML.
Flex 3 is a leading technology for developing RIAs for the Web, as well as for the
desktop. This book gives you an insight into, and provides a hands-on experience in,
programming in Flex 3 by utilizing your existing knowledge of Java programming.

This book includes comprehensive information on various concepts of Flex 3 and
ActionScript 3.0, such as developing simple applications and handling events to creating
custom components and events, using RPC services, integration with Java and BlazeDS,
styling and formatting, and how to package and deploy Flex applications. Finally, this
book provides a step-by-step tutorial for developing e-commerce applications using Flex
3, ActionScript 3.0, BlazeDS, and Java.

You will start with downloading, installing, and configuring Flex 3 SDK and Flex
Builder 3 and learn basic concepts, such as what is Macromedia Flex Markup Language
(MXML) and ActionScript, understanding UI components, controls and compilers, and
so on. Furthermore, you will start developing simple applications and slowly go into
more depth where you will learn advanced concepts, such as creating custom
components, debugging, integrating with Java, using RPC services, styling,
internationalizing, and deploying Flex applications, and much more.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

What This Book Covers
Chapter 1: Installing and Configuring Adobe Flex—In this chapter, you will learn the
basics of Flex programming, that is, downloading, installing, and configuring Flex SDK
and Flex Builder 3.

Chapter 2: Introduction to Flex 3 Framework—This chapter will introduce you to the
MXML scripting for laying out User Interfaces (UI) in the Flex world. This chapter also
provides hands-on examples required to get you started with MXML programming.

Chapter 3: Introduction to ActionScript 3.0—This chapter will introduce you to the
ActionScript 3.0 programming language along with detailed code samples.

Chapter 4: Using External API and LocalConnection - In this chapter, you will learn how
to communicate with JavaScript from a Flex application and vice versa.

Chapter 5: Working with XML—In this chapter, you will learn how to work with XML
data using Flex's E4X approach.

Chapter 6: Overview of LiveCycle Data Services and BlazeDS—This chapter will
provide an overview of BlazeDS and LiveCycle Data Services.

Chapter 7: Flex Data Access Methods—This chapter provides you with in-depth
information about various data access methods available in Flex with detailed and step-
by-step code samples along with Flash Player security model. It also gives you a detailed
insight into how to use RemoteObject to communicate with Java code.

Chapter 8: Communicating with Server-side Java—This chapter provides step-by-step
code examples to get started with Flex and Java communication along with clear and
simple code examples..

Chapter 9: Debugging Techniques—In this chapter, you will learn how to debug your
Flex application using Flex Builder 3 and some third-party tools.

Chapter 10: Packaging and Deployment—You will learn how to build and package a
Flex application using available tools, such as Apache Ant, and learn about various
deployment options that you can use.

Chapter 11: Styling Your Application—This chapter will give an overview of using
Cascading Style Sheet (CSS) for changing the look and feel of your Flex application and
components with brief code examples and tools for designing CSS files.

Chapter 12: Internationalization and Localization—This chapter will give you an
overview of internationalizing your application.

Chapter 13: Creating an E-commerce Application—This chapter will provide a step-by-
step guide for creating an end-to-end e-commerce application using Flex 3, ActionScript
3.0, BlazeDS, and Java.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML
In today's world, many server-side applications make use of XML to structure data
because XML is a standard way of representing structured information. It is easy to
work with, and people can easily read, write, and understand XML without the need
of any specialized skills. The XML standard is widely accepted and used in server
communications such as Simple Object Access Protocol (SOAP) based web services.
 XML stands for eXtensible Markup Language. The XML standard specifi cation is
available at http://www.w3.org/XML/.

Adobe Flex provides a standardized ECMAScript-based set of API classes and
functionality for working with XML data. This collection of classes and functionality
provided by Flex are known as E4X. You can use these classes provided by Flex to
build sophisticated Rich Internet applications using XML data.

This chapter covers the E4X approach to process XML data with a comprehensive
example application using these techniques to process XML data.

XML basics
 XML is a standard way to represent categorized data into a tree structure similar to
HTML documents. XML is written in plain-text format, and hence it is very easy to
read, write, and manipulate its data.

A typical XML document looks like this:

<book>
 <title>Flex 3 with Java</title>
 <author>Satish Kore</author>
 <publisher>Packt Publishing</publisher>
 <pages>300</pages>
</book>

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[120]

Generally, XML data is known as XML documents and it is represented by tags
wrapped in angle brackets (<>). These tags are also known as XML elements. Every
XML document starts with a single top-level element known as the root element.
Each element is distinguished by a set of tags known as the opening tag and the
closing tag. In the previous XML document, <book> is the opening tag and </book>
is the closing tag. If an element contains no content, it can be written as an empty
statement (also called self-closing statement). For example, <book/> is as good as
writing <book></book>.

 XML documents can also be more complex with nested tags and attributes, as shown
in the following example:

<book ISBN="978-1-847195-34-0">
 <title>Flex 3 with Java</title>
 <author country="India" numberOfBooks="1">
 <firstName>Satish</firstName>
 <lastName>Kore</lastName>
</author>
 <publisher country="United Kingdom">Packt Publishing</publisher>
 <pages>300</pages>
</book>

Notice that the above XML document contains nested tags such as <firstName> and
<lastName> under the <author> tag. ISBN, country, and numberOfBooks, which
you can see inside the tags, are called XML attributes.

To learn more about XML, visit the W3Schools' XML Tutorial at
http://w3schools.com/xml/.

Understanding E4X
 Flex provides a set of API classes and functionality based on the ECMAScript for
XML (E4X) standards in order to work with XML data. The E4X approach provides
a simple and straightforward way to work with XML structured data, and it also
reduces the complexity of parsing XML documents.

Earlier versions of Flex did not have a direct way of working with XML data. The
E4X provides an alternative to DOM (Document Object Model) interface that uses a
simpler syntax for reading and querying XML documents. More information about
other E4X implementations can be found at http://en.wikipedia.org/wiki/E4X.

The key features of E4X include:

It is based on standard scripting language specifi cations known as
ECMAScript for XML. Flex implements these specifi cations in the form of
API classes and functionality for simplifying the XML data processing.

•

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[121]

It provides easy and well-known operators, such as the dot (.) and @, to work
with XML objects.
The @ and dot (.) operators can be used not only to read data, but also to
assign data to XML nodes, attributes, and so on.
The E4X functionality is much easier and more intuitive than working with
the DOM documents to access XML data.

ActionScript 3.0 includes the following E4X classes: XML, XMLList, QName, and
Namespace. These classes are designed to simplify XML data processing into
Flex applications.

Let's see one quick example:

Defi ne a variable of type XML and create a sample XML document. In this example,
we will assign it as a literal. However, in the real world, your application might load
XML data from external sources, such as a web service or an RSS feed.

private var myBooks:XML =
 <books publisher="Packt Pub">
 <book title="Book1" price="99.99">
 <author>Author1</author>
 </book>
 <book title="Book2" price="59.99">
 <author>Author2</author>
 </book>
 <book title="Book3" price="49.99">
 <author>Author3</author>
 </book>
 </books>;

Now, we will see some of the E4X approaches to read and parse the above XML
in our application. The E4X uses many operators to simplify accessing XML nodes
and attributes, such as dot (.) and attribute identifi er (@), for accessing properties
and attributes.

private function traceXML():void {
 trace(myBooks.book.(@price < 50.99).@title); //Output: Book3
 trace(myBooks.book[1].author); //Output: Author2
 trace(myBooks.@publisher); //Output: Packt Pub
 //Following for loop outputs prices of all books
 for each(var price in myBooks..@price) {
 trace(price);
 }
}

•

•

•

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[122]

In the code above, we are using a conditional expression to extract the title of the
book(s) whose price is set below 50.99$ in the fi rst trace statement. If we have to do
this manually, imagine how much code would have been needed to parse the XML.
In the second trace, we are accessing a book node using index and printing its author
node's value. And in the third trace, we are simply printing the root node's publisher
attribute value and fi nally, we are using a for loop to traverse through prices of all
the books and printing each price.

The following is a list of XML operators:

Operator Name Description
@ attribute

identifi er
Identifi es attributes of an XML or XMLList objec t.

{ } braces (XML) Evaluates an expression that is used in an XML or XMLList
initializer.

[] brackets
(XML)

Accesses a property or attribute of an XML or XMLList
object, for example myBooks.book["@title"].

+ concatenation
(XMLList)

Concatenates (combines) XML or XMLList values into an
XMLList object.

+= concatenation
assignment
(XMLList)

Assigns expression1, which is an XMLList object, the
value of expression1 + expression2.

There
is no
operator

delete (XML) Deletes the XML elements or attributes specifi ed by
reference. For example:
delete myBooks.book[0].author;.
(The above code line deletes the author element from the
book node.)
OR
delete myBooks.book[0].@title;
(The above code line deletes the title attribute from the
book node.)

.. descendant
accessor

Navigates to descendant elements of an XML or XMLList
object, or (combined with the @ operator) fi nds matching
attributes of descendants.

. dot (XML) Navigates to child elements of an XML or XMLList object,
or (combined with the @ operator) returns attributes of an
XML or XMLList object.

() parentheses
(XML)

Evaluates an expression in an E4X XML construct.

< > XML literal
tag delimiter

Defi nes an XML tag in an XML literal.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[123]

The @ and dot (.) operators can be used to read as well as assign data, as shown in
following example:

myBooks.book[1].author = "Satish Kore";
myBooks.book.(@price < 50.99).@title = "Low Price Edition Book";

Now, let's look at the important classes used for working with XML data in Flex in
the next section.

The XML object
 An XML class represents an XML element, attribute, comment, processing instruction,
or a text element.

We have used the XML class in our example above to initialize the myBooks variable
with an XML literal. The XML class is included into an ActionScript 3.0 core class, so
you don't need to import a package to use it.

The XML class provides many properties and methods to simplify XML processing,
such as ignoreWhitespace and ignoreComments properties, used for ignoring
whitespaces and comments in XML documents respectively. You can use the
prependChild() and appendChild() methods to prepend and append XML nodes
to existing XML documents. Methods such as toString() and toXMLString() allow
you to convert XML to a string.

An example of an XML object:

private var myBooks:XML =
<books publisher="Packt Pub">
 <book title="Book1" price="99.99">
 <author>Author1</author>
 </book>
 <book title="Book2" price="120.00">
 <author>Author2</author>
 </book>
</books>;

In the above example, we have created an XML object by assigning an XML literal to
it. You can also create an XML object from a string that contains XML data, as shown
in the following example:

private var str:String = "<books publisher=\"Packt Pub\"> <book
title=\"Book1\" price=\"99.99\"> <author>Author1</author> </book>
<book title=\"Book2\" price=\"59.99\"> <author>Author2</author> </
book> </books>";
private var myBooks:XML = new XML(str);
trace(myBooks.toXMLString()); //outputs formatted xml as string

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[124]

If the XML data in string is not well-formed (for example, a closing
tag is missing), then you will see a runtime error.

 You can also use binding expressions in the XML text to extract contents from a
variable data. For example, you could bind a node's name attribute to a variable
value, as in the following line:

private var title:String = "Book1"
var aBook:XML = <book title="{title}">;

To read more about XML class methods and properties, go through Flex 3 LiveDocs
at http://livedocs.adobe.com/flex/3/langref/XML.html.

The XMLList object
 As the class name indicates, XMLList contains one or more XML objects. It can contain
full XML documents, XML fragments, or the results of an XML query.

You can typically use all of the XML class's methods and properties on the objects
from XMLList. To access these objects from the XMLList collection, iterate over it
using a for each… statement.

The XMLList provides you with the following methods to work with its objects:

child(): Returns a specifi ed child of every XML object
children(): Returns specifi ed children of every XML object
descendants(): Returns all descendants of an XML object
elements() : Calls the elements() method of each XML object in the
XMLList. Returns all elements of the XML object
parent() : Returns the parent of the XMLList object if all items in the
XMLList object have the same parent
attribute(attributeName): Calls the attribute() method of each XML
object and returns an XMLList object of the results. The results match the
given attributeName parameter
attributes(): Calls the attributes() method of each XML object and
returns an XMLList object of attributes for each XML object
contains(): Checks if the specifi ed XML object is present in the XMLList
copy(): Returns a copy of the given XMLList object
length(): Returns the number of properties in the XMLList object
valueOf(): Returns the XMLList object

•

•

•

•

•

•

•

•

•

•

•

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[125]

For details on these methods, see the ActionScript 3.0 Language Reference.

Let's return to the example of the XMLList:

var xmlList:XMLList = myBooks.book.(@price == 99.99);
var item:XML;
for each(item in xmlList)
{
 trace("item:"+item.toXMLString());
}

Output:

item:<book title="Book1" price="99.99">
 <author>Author1</author>
</book>

In the example above, we have used XMLList to store the result of the
myBooks.book.(@price == 99.99); statement. This statement returns
an XMLList containing XML node(s) whose price is 99.99$.

Working with XML objects
 The XML class provides many useful methods to work with XML objects, such as
the appendChild() and prependChild() methods to add an XML element to the
beginning or end of an XML object, as shown in the following example:

var node1:XML = <middleInitial>B</middleInitial>
var node2:XML = <lastName>Kore</lastName>
var root:XML = <personalInfo></personalInfo>
root = root.appendChild(node1);
root = root.appendChild(node2);
root = root.prependChild(<firstName>Satish</firstName>);

The output is as follows:

<personalInfo>
 <fi rstName>Satish</fi rstName>
 <middleInitial>B</middleInitial>
 <lastName>Kore</lastName>
</personalInfo>

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[126]

 You can use the insertChildBefore() or insertChildAfter() method to add a
property before or after a specifi ed property, as shown in the following example:

var x:XML = <count>
 <one>1</one>
 <three>3</three>
 <four>4</four>
 </count>;
x = x.insertChildBefore(x.three, "<two>2</two>");
x = x.insertChildAfter(x.four, "<five>5</five>");
trace(x.toXMLString());

The output of the above code is as follows:

<count>
 <one>1</one>
 <two>2</two>
 <three>3</three>
 <four>4</four>
 <fi ve>5</fi ve>
</count>

Using XML as dataProvider
 One of the powerful features of the XML object is to use it as a dataProvider
for your component that allows you to tie XML directly with your component's
data model. Let's see how we can use XML as the dataProvider of a DataGrid
component to display complex data.

private var xmlData:XML =
<books>
 <book ISBN="184719530X">
 <title>Building Websites with Joomla! 1.5</title>
 <author>
 <lastName>Hagen</lastName>
 <firstName>Graf</firstName>
 </author>
 
 <pageCount>363</pageCount>
 <price>Rs.1,247.40</price>
 <description>The best-selling Joomla! tutorial</description>

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[127]

 </book>
</books>;
private function getAuthorName(item:Object, column:DataGridColumn):
String {
 var xml:XML = XML(item);
 return item.author.firstName +" "+ item.author.lastName;
}

 We have created an XML object with a complex XML structure. Now, we will
tie this with the DataGrid component using data binding, as shown in the
following example:

<mx:Panel title="XML dataProvider example" width="666" height="149">
 <mx:DataGrid id="dgGrid" dataProvider="{xmlData.book}"
 height="100%" width="100%">
 <mx:columns>
 <mx:DataGridColumn headerText="ISBN" dataField="@ISBN"/>
 <mx:DataGridColumn headerText="Title" dataField="title"/>
 <mx:DataGridColumn headerText="Author"
 labelFunction="getAuthorName"/>
 <mx:DataGridColumn headerText="Price" dataField="price"/>
 <mx:DataGridColumn headerText="Description"
 dataField="description"/>
 </mx:columns>
 </mx:DataGrid>
</mx:Panel>

In the code above, we have created a DataGrid component with a set of columns to
display data from the XML object. Notice that we have used {} (curly braces) to bind
the XML object's specifi c nodes with the DataGrid. This means {xmlData.book}
specifi es that the DataGrid will use the book node(s) and its children nodes as source
of its data.

We have used the DataGridColumn's dataField property. The dataField property
is the name of the element or attribute in the XML data provider item associated with
the column. For example, to display the book's title, the dataField property is set
to title.

 The labelFunction function is used to specify the name of a function. The function
will be called and the return value is used to display in this column. For example,
sometimes you might need to customize how your data gets displayed. In this case,
labelFunction is used to concatenate the firstName and lastName element's
values and return them as a single string.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[128]

The labelFunction function takes two parameters: the DataGrid item as an object
and the DataGrid column.

The output looks as follows:

You can also use the XMLListCollection object as the dataProvider of your
component. The XMLListCollection object can hold the XMLList objects and
provides a set of methods that lets you access, sort, fi lter, and modify the data items
in that data object. This is very helpful if you are working with dynamic XML data.
It can be used to dynamically add and remove items from the data provider and its
representation in the UI control.

 The following example shows how to work with XMLListCollection and
dynamically add new elements in it:

private var xmlData:XML =
 <books>
 <book ISBN="184719530X">
 <title>Building Websites with Joomla! 1.5</title>
 <author>
 <lastName>Hagen</lastName>
 <firstName>Graf</firstName>
 </author>
 
 <pageCount>363</pageCount>
 <price>Rs.1,247.40</price>
 <description>The best-selling Joomla! tutorial</description>
 </book>
 </books>;

private var newBookElement:XML =
 <book ISBN="1847196160">
 <title>Drupal 6 JavaScript and jQuery</title>
 <author>
 <lastName>Matt</lastName>
 <firstName>Butcher</firstName>
 </author>

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[129]

 
 <pageCount>250</pageCount>
 <price>Rs.1,108.80</price>
 <description>Drupal 6 modules and themes</description>
 </book>;

private var xmlListCollection:XMLListCollection =
new XMLListCollection(xmlData.book);

N ote that xmlData.book returns an XMLList object with all book elements.

Y ou can use the addItem() method of the X MLListCollection class to add
newBookElement to it, as shown here:

xmlListCollection.addItem(newBookElement);

And you can set the xmlListCollection object as the dataProvider of your
DataGrid using {} (curly braces) data-binding expression.

Loading external XML documents
Y ou can use the URLLoader class to load external data from a URL. The URLLoader
class downloads data from a URL as text or binary data. In this section, we will see
how to use the URLLoader class for loading external XML data into your application.
You can create a URLLoader class instance and call the load() method by passing
URLRequest as a parameter and register for its complete event to handle loaded data.
The following code snippet shows how exactly this works:

private var xmlUrl:String = "http://www.foo.com/rssdata.xml";
private var request:URLRequest = new URLRequest(xmlUrl);
private var loader:URLLoader = new URLLoader(;
private var rssData:XML;

loader.addEventListener(Event.COMPLETE, completeHandler);

loader.load(request);

private function completeHandler(event:Event):void {
 rssData = XML(loader.data);
 trace(rssData);
}

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[130]

Let's see one quick complete sample of loading RSS data from the Internet:

 <?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="loadData();">

 <mx:Script>
 <![CDATA[
 import mx.collections.XMLListCollection;

 private var xmlUrl:String = "http://sessions.adobe.com/
 360FlexSJ2008/feed.xml";
 private var request:URLRequest = new URLRequest(xmlUrl);
 private var loader:URLLoader = new URLLoader(request);
 [Bindable]
 private var rssData:XML;

 private function loadData():void {
 loader.addEventListener(Event.COMPLETE, completeHandler);
 loader.load(request);
 }
 private function completeHandler(event:Event):void {
 rssData = new XML(loader.data);
 }

]]>
 </mx:Script>
 <mx:Panel title="RSS Feed Reader" width="100%" height="100%">
 <mx:DataGrid id="dgGrid" dataProvider="{rssData.channel.item}"
 height="100%" width="100%">
 <mx:columns>
 <mx:DataGridColumn headerText="Title" dataField="title"/>
 <mx:DataGridColumn headerText="Link" dataField="link"/>
 <mx:DataGridColumn headerText="pubDate"
 dataField="pubDate"/>
 <mx:DataGridColumn headerText="Description"
 dataField="description"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:TextArea width="100%" height="80"
 text="{dgGrid.selectedItem.description}"/>
 </mx:Panel>
 </mx:Application>

In the code above, we are loading RSS feed from an external URL and displaying it in
DataGrid by using data binding.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[131]

Output:

An example: Building a book explorer
By this time, you would be comfortable in writing Flex applications by using many
features of Flex and ActionScript, which you have learned in the previous chapters.
In this section, we will build something more complicated and interesting by using
many features, including custom components, events, data binding, E4X, loading
external XML data, and so on.

We will build a sample books explorer, which will load a books catalog from an
external XML fi le and allow the users to explore and view details of books. We will
also build a simple shopping cart component, which will list books that a user would
add to cart by clicking on the add to cart button.

Create a new Flex project using Flex Builder. Once the project is created, create
an \assets\images\ folder under its src folder. This folder will be used to store
images used in this application. Now start creating the following source fi les into
its source folder.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[132]

Let's start by creating a simple book catalog XML fi le as follows:

b ookscatalog.xml:

<books>
 <book ISBN="184719530X">
 <title>Building Websites with Joomla! 1.5</title>
 <author>
 <lastName>Hagen</lastName>
 <firstName>Graf</firstName>
 </author>
 
 <pageCount>363</pageCount>
 <price>Rs.1,247.40</price>
 <description>The best-selling Joomla! tutorial guide updated for
the latest 1.5 release </description>
 </book>
 <book ISBN="1847196160">
 <title>Drupal 6 JavaScript and jQuery</title>
 <author>
 <lastName>Matt</lastName>
 <firstName>Butcher</firstName>
 </author>
 
 <pageCount>250</pageCount>
 <price>Rs.1,108.80</price>
 <description>Putting jQuery, AJAX, and JavaScript effects into
your Drupal 6 modules and themes</description>
 </book>
 <book ISBN="184719494X">
 <title>Expert Python Programming</title>
 <author>
 <lastName>Tarek</lastName>
 <firstName>Ziadé</firstName>
 </author>
 
 <pageCount>350</pageCount>
 <price>Rs.1,247.4</price>
 <description>Best practices for designing, coding, and
distributing your Python software</description>
 </book>
 <book ISBN="1847194885">
 <title>Joomla! Web Security</title>
 <author>
 <lastName>Tom</lastName>

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[133]

 <firstName>Canavan</firstName>
 </author>
 
 <pageCount>248</pageCount>
 <price>Rs.1,108.80</price>
 <description>Secure your Joomla! website from common security
threats with this easy-to-use guide</description>
 </book>
</books>

The above XML fi le contains details of individual books in an XML form. You can
also deploy this fi le on your web server and specify its URL into URLRequest while
loading it.

Ne xt, we will create a custom event which we will be dispatching from our custom
component. Make sure you create an events package under your src folder in Flex
Builder called events, and place this fi le in it.

AddToCartEvent.as

package events
{
 import flash.events.Event;

 public class AddToCartEvent extends Event
 {
 public static const ADD_TO_CART:String = "addToCart";
 public var book:Object;

 public function AddToCartEvent(type:String, bubbles:
Boolean=false, cancelable:Boolean=false)
 {
 super(type, bubbles, cancelable);
 }

 }
}

Th is is a simple custom event created by inheriting the flash.events.Event
class. This class defi nes the ADD_TO_CART string constant, which will be used as
the name of the event in the addEventListener() method. You will see this in the
BooksExplorer.mxml code. We have also defi ned an object to hold the reference of
the book which the user can add into the shopping cart. In short, this object will hold
the XML node of a selected book.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[134]

Ne xt, we will create the MXML custom component called BookDetailItemRenderer.
mxml. Make sure that you create a package under your src folder in Flex Builder called
components, and place this fi le in it and copy the following code in it:

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 cornerRadius="8" paddingBottom="2" paddingLeft="2"
 paddingRight="2" paddingTop="2">
 <mx:Metadata>
 [Event(name="addToCart", type="flash.events.Event")]
 </mx:Metadata>

 <mx:Script>
 <![CDATA[
 import events.AddToCartEvent;
 import mx.controls.Alert;

 [Bindable]
 [Embed(source="../assets/images/cart.gif")]
 public var cartImage:Class;

 private function addToCardEventDispatcher():void {
 var addToCartEvent:AddToCartEvent = new AddToCartEvent
 ("addToCart", true, true);
 addtoCartEvent.book = data;
 dispatchEvent(addtoCartEvent);
 }
]]>
 </mx:Script>
 <mx:HBox width="100%" verticalAlign="middle" paddingBottom="2"
 paddingLeft="2" paddingRight="2" paddingTop="2" height="100%"
 borderStyle="solid" borderThickness="2" borderColor="#6E6B6B"
 cornerRadius="4">
 <mx:Image id="bookImage" source="{data.image}" height="109"
 width="78" maintainAspectRatio="false"/>
 <mx:VBox height="100%" width="100%" verticalGap="2"
 paddingBottom="0" paddingLeft="0" paddingRight="0"
 paddingTop="0" verticalAlign="middle">
 <mx:Label id="bookTitle" text="{data.title}"
 fontSize="12" fontWeight="bold"/>
 <mx:Label id="bookAuthor" text="By: {data.author.
 lastName},{data.author.firstName}" fontWeight="bold"/>
 <mx:Label id="coverPrice" text="Price: {data.price}"
 fontWeight="bold"/>
 <mx:Label id="pageCount" text="Pages: {data.pageCount}"
 fontWeight="bold"/>

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[135]

 <mx:HBox width="100%" backgroundColor="#3A478D"
 horizontalAlign="right" paddingBottom="0" paddingLeft="0"
 paddingRight="5" paddingTop="0" height="22"
 verticalAlign="middle">
 <mx:Label text="Add to cart " color="#FFFFFF"
 fontWeight="bold"/>
 <mx:Button icon="{cartImage}" height="20" width="20"
 click="addToCardEventDispatcher();"/>
 </mx:HBox>
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

 The above custom component will be used as an itemRenderer to display
books' details from an XML fi le. In this example, we have created a custom
MXML-based component. This custom component dispatches a custom event
called AddToCartEvent when a user clicks on the add to cart button. Notice that
when we are dispatching an event, we are setting its bubbles argument (second
argument in the AddToCartEvent constructor, which is inherited from the
flash.events.Event class) to true. This is very important in order to bubble this
event up to its parent where we will write an event listener for it. (For information
on bubbling, please see the Event propagation section in Chapter 3). You will see how
to write an event listener on the parent to handle the event dispatched by its children
in the BooksExplorer.mxml code. At the end, this custom component will be used
as ItemRenderer of the TileList component to display books. So we are using the
data property of the itemRenderer instance to access XML nodes and properties
using the E4X technique. The data property is implicitly available in item renderers
that can be used to access content locally. For information on ItemRenderers and
how to use its data property, please see the Understanding Flex item renderers section
in Chapter 2.

 Next, we will create the main application and layout the book explorer user interface,
and then we will write business logic for loading XML data and display it in the
custom component, and so on.

BooksExplorer.mxml:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" creationCom
plete="init()"
 xmlns:components="components.*" layout="horizontal">

 <mx:Script>
 <![CDATA[
 import mx.collections.XMLListCollection;
 import mx.formatters.CurrencyFormatter;
 import mx.collections.ArrayCollection;

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[136]

 import mx.effects.Blur;
 import events.AddToCartEvent;
 import components.BookDetailItemRenderer;
 import mx.controls.Alert;

 private var loader:URLLoader;
 private var request:URLRequest;

 [Bindable]
 private var xmlData:XML;

 [Bindable]
 private var selectedBook:XML;
 [Bindable]
 private var shoppingCart:ArrayCollection;

 private function init():void {
 tileList.addEventListener(AddToCartEvent.ADD_TO_CART,
 addToCartHandler);
 shoppingCart = new ArrayCollection();

 request = new URLRequest("./bookscatalog.xml");

 loader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, completeHandler);

 try {
 loader.load(request);
 } catch (error:SecurityError) {
 trace("A SecurityError has occurred.");
 } catch(error:Error) {
 trace("An Unknown Error has occurred. ["+error.
 message+"]");
 }
 }

 private function completeHandler(event:Event):void {
 xmlData = new XML(loader.data);
 }
 private function addToCartHandler(event:AddToCartEvent):void
{
 shoppingCart.addItem(XML(event.book));
 }
 private function itemSelected(event:Event):void {
 selectedBook = XML(tileList.selectedItem);
 }
]]>
 </mx:Script>
 <mx:VBox width="100%" height="100%" verticalAlign="bottom">
 <mx:HBox width="100%" height="70%">

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[137]

 <mx:Panel title="Products Explorer" width="70%" height="100%"
 layout="horizontal">
 <mx:TileList id="tileList" variableRowHeight="false"
 itemRenderer="components.BookDetailItemRenderer"
 dataProvider="{xmlData.book}"
 change="itemSelected(event)" columnCount="2"
 height="100%" width="100%"/>
 </mx:Panel>
 <mx:Panel width="30%" height="100%" title="Details">
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Book Name:">
 <mx:Label id="bookName" text="{selectedBook.title}"/>
 </mx:FormItem>
 <mx:FormItem label="ISBN:">
 <mx:Label id="isbnNumber"
 text="{selectedBook.@ISBN}"/>
 </mx:FormItem>
 <mx:FormItem label="Author:">
 <mx:Label id="authorName">
 <mx:text>{selectedBook.author.firstName}
 {selectedBook.author.lastName}</mx:text>
 </mx:Label>
 </mx:FormItem>
 <mx:FormItem label="Pages:">
 <mx:Label id="pageNumber"
 text="{selectedBook.pageCount}"/>
 </mx:FormItem>
 <mx:FormItem label="Price:">
 <mx:Label id="bookPrice"
 text="{selectedBook.price}"/>
 </mx:FormItem>
 <mx:FormItem label="Description:">
 <mx:Text id="bookDesc"
 text="{selectedBook.description}" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Cover Page:">
 <mx:Image width="138"
 height="146" source="{selectedBook.image}"/>
 </mx:FormItem>
 </mx:Form>
 </mx:Panel>
 </mx:HBox>
 <mx:HBox width="100%" height="30%">
 <mx:Panel width="100%" height="100%" title="Shopping Cart">

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[138]

 <mx:DataGrid id="dgGrid" dataProvider="{shoppingCart}"
 height="100%" width="100%" editable="true">
 <mx:columns>
 <mx:DataGridColumn headerText="Book Name"
 dataField="title" editable="false"/>
 <mx:DataGridColumn headerText="Price"
 dataField="price" editable="false"/>
 <mx:DataGridColumn headerText="Qty."
 dataField="quantity" editable="true"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:ControlBar>
 <mx:Button label="Checkout"
 click="Alert.show(‚Not yet implemented.');"/>
 <mx:Button label="Remove"
 click="Alert.show(‚Not yet implemented.');"/>
 </mx:ControlBar>
 </mx:Panel>
 </mx:HBox>
 </mx:VBox>

</mx:Application>

In the code above, we have used the HBox, VBox, and Panel containers to lay out
the main user interface. We have also added a TileList component to display
books using a custom component, that is, BookDetailItemRenderer.mxml as
its itemRenderer. Next, we have added another Panel container to display the
selected book's details using a Form container. We have used data binding to bind
the selected book's details with individual labels in the Form container, for example,
text="{selectedBook.title}". The selectedBook is an XML object which will be
populated with the selected book's details when you select an item in the TileList
component using its change event.

The TileList control displays a number of items laid out in tiles.
It displays a scroll bar to access all items in the list. You can use its
direction property to control the direction in which this control
lays out its children. To know more about the TileList control,
see Flex 3 language reference at http://livedocs.adobe.com/
flex/3/langref/mx/controls/TileList.html.

Next, we have created another Panel container to create the shopping cart user
interface and added a DataGrid component to display cart details. The DataGrid
component is using data binding to display information from the shoppingCart
ArrayCollection object, which will contain individual selected book nodes. We will
populate the shopppingCart array in the addToCartH andler() method, which is
the event handler for the addToCart custom event.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Chapter 5

[139]

In the ActionScript code block, we have defi ned a method called init() to
initialize the application's resources and variables. This method is called in the
application tag's creationComplete event. In this method, we have registered
an event handler for the addToCart event which will be dispatched by the
BookDetailItemRenderer.mxml custom component.

Notice that BookDetailItemRenderer.mxml is acting as an itemRenderer of a
TileList component, so there is no straight way to add an event listener to it.
Therefore, to handle events from the itemRenderer component in its parent, you
need to dispatch an event from custom component by setting its bubble argument
to true. When an event is dispatched with the bubble argument set to true, Flex
searches for event listeners in the bottom to top order—that is, from event target
to root display object. When it fi nds an appropriate event listener anywhere in its
display hierarchy, it delivers an event to it. This is a simple way to communicate
with your application from itemRenderers.

Next, we are loading XML fi le using URLLoader and setting its result to the xmlData
XML object, which is used as the dataProvider of the TileList component.
xmlData.book refers to individual <book> node(s) from the XML fi le.

Now we are ready with our application. Once we compile and execute this
application, you would see the following screen:

Y ou can play with this application. You can try selecting different items from the
TileList control and see how it changes display in the Details panel, and see what
happens when you click on the Add to cart button.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Working with XML

[140]

Summary
In this chapter, you learned what E4X is and how to use it to work with XML data.
You also learned various Flex classes to work with XML data, and how to load
external XML fi les and use XML as a data provider. You also created a sample
books explorer application using various concepts such as custom component,
event creation, data binding, and E4X.

In the next chapter, you will learn about Adobe's LiveCycle Data Services and what
is the BlazeDS platform.

http://www.packtpub.com/flex-3-with-java/book

For More Information: www.packtpub.com/flex-3-with-java/book

Where to buy this book
You can buy Flex 3 with Java from the Packt Publishing website:
http://www.packtpub.com/flex-3-with-java/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/flex-3-with-java/book
http://www.packtpub.com/Shippingpolicy

	 In this package, you will find:

